Entropy dissiation for some Lindblad equations

descibing many-body kinetic systems

Eric Carlen

Rutgers University

Joint work with Michael Loss

June 13, 2022

Eric Carlen (Rutgers) Entropy Dissipation June 13, 2022 1/36



Quantum Markov Semigroups

Let H be a finite dimensional Hilbert space. Make B(?) a Hilbert space
by equipping it with the Hilbert-Schmidt inner product

(A, B) = Tr[A*B].

A linear transformation ® : B(#H) — B(#) has an adjoint with respect to
this inner product that we denote by ®f. A linear transformation

& : B(H) — B(H) is unital in case (/) = | and it is trace preserving
(TP) in case for all A€ B(H), Tr[®(A)] = Tr[A]. ® is unital if and only if
oT is trace preserving.
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For A, B, C, D in B(H), consider the block operator

A B
¢ D

}=A®E1,1+B®E1,2+C®E2,1—|—D®Ez,2

which we may think of as an operator on H @ H, or equivalently H ® C2.
Then ® is 2-positive in case

o)== [5G w20

i.e., in case ® @ Iy, (c) is positivity preserving. The definition of
n-positivity is made in the obvious way, and then ® is completely positive
(CP) in case @ is n-positive for all n € N,
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We will be particularly concerned with completely positive maps & that
satisfy ®f = & that are unital and hence trace preserving. CPTP maps
have a particularly simple Stinespring factorization:

Define Wy, : B(H) — B(H) @ Mpy(C) by

A
V., (A) = - = A® Iy, () -
| 0
Then for some unitary U on H ® M,(C), and some m,

®(A) = Tr(UWm(A)U)

= > UjjAUi =) VFAV .
j=1 j=1
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A Quantum Markov Semigroup (QMS) on B(#H) is a semigroup {P:}+>0
on B(#) such that each P; is unital and CP.

Let ® be any CP map on B(H). Then {et®};>, is a CP semigroup. For
any G € B(H), A et Aet® gives another example. Now define

L(A) := ®(A) — (G*A + AG) .

By the Trotter product formula, {eft};>q is a CP semigroup. It is unital if
and only if L(/) =0, and hence

®(/)=G"+G sothat G= %¢>(I) +iH .

Hence
L(A) = 6(A) — 5(@(1A+ A®(1)) + i[H, A]
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Lindblad's Theorem says that every QMS is if the form {eft},~o where for
some CP map ® and some self-adjoint H € B(H),

L(A) = B(A) — %(CD(I)A + AS(1) + i[H, A] .
With ®(A) = S, VAV,

m

L(X) = Z(v*xvj SViViX -
j=1

—

XV; \/,) +i[H, X]

N

If L= LT and H=0,
1L 1
L= =3 > V5 V7 XTT = =5 31V 15, X1
j=1 j=1

Then g (t) = Lp(t) is a sort of “quantum heat equation”.
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Relative entropy

Given two density matrices p, o € B(H), the relative entropy of p with
respect to o, D(p||o), is defined by

D(pllo) := Tr[p(log p — log 7)]
Now suppose that {P:}>0 is a QMS and for each t, Py = PT so that P;:

takes density matrices to density matrices. Suppose also that P;o = 0.
By the Data Processing Inequality (DPI),

D(Ppl|o) = D(Pep||Peo) < D(pllo) -

The relative entropy dissipation under P; is

d
I(pllo) =~ D(Plpllo)| =0,
t=0

Eric Carlen (Rutgers) Entropy Dissipation June 13, 2022 7/36



Entropy-Entropy Dissipation

A generalized logarithmic Sobolev inequality) (GLSI) is an inequality of the
form

I(pllo) = cD(pllo)
for ¢ > 0. Such an inequality yields
D(Pepl|P:o) < e D(pllo) .

Suppose such an inequality holds with ¢ = m/. Let h be self adjoint

with Tr[h] = 0. Then for all € small enough, p. :== o + eh is a density
matrix, and so for all such ¢,

1(pcllo) = cD(pdllo) -
Expanding to second order in € yields the spectral gap inequality (SGI)

—(h,Lh) > =(h,h) for (h,1)=0.

N O
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As we have seen, a spectral gap inequality is weaker than a generalized
logarithmic Sobolev inequality. There is also a stronger inequality, namely
a logarithmic Sobolev inequality.

Theorem

Let L be a quantum Markov semigroup generator with L = LT, and let o
satisfy Lo = 0. Then for any density matrix p.

Hpllo) >4 Tr|lV;, vl

Jj=1
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A logarithmic Sobolev inequality (LSI) for the QMS generators considered
here is an inequality of the form

STV Al 2§ D(pllo) -
j=1

By the theorem, this implies

I(pllo) = cD(pllo) ,

which in turn implies

—(h,Lh) > Z(h, h) .

N O

It is known that

1 1
D(pllo) > EHP —ol1= §Tr[|p —ol] .
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An easy computation yields (since L = L)

(pllo) = — Tr[(Lp)(log p — log )] -

Using the integral representation

1
log X = / <)\+1_>\+X)d)"

one deduces

(ollo) =5 3 [T [ Wl
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The functional

(KX)H/OOT K* L K 1 dA

r S — S —

’ 0 A+ X A+ X

is jointly convex on M,(C) x M *(C) by a Theorem of Lieb from 1973.
Just as the joint convexity of the relative entropy leads to the DPI, this
functional is also monotone decreasing under

(K, X) = (®(K), ®(X))

for any CPTP map, a result due to Petz in 1996.

This is fundamentally important in a geometric approach to proving GLSI
that has been developed by myself and Jan Maas, and other researchers as
well — it is a very active field. But it is unknown how to check the
geometric conditions in the cases we discuss here. Instead, we shall
directly prove an LSI.
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The N-particle binary collision model

Consider a d-dimensional Hilbert space H and a single particle Hamiltonian
h with d distinct eigenvalues ey, ..., eqs—1. Let {¢g,...,9g_1} be an
orthonormal basis for H with hy); = ej¢; for all 0 < j < d — 1. The
corresponding N-particle Hamiltonian on Hy = @NH is given by

N
HN:Z/®-~-®h®---®/
j=1

where h is in the jth position. The eigenvalues of Hy are indexed by the
multindices a € {0,...,d — 1}V, and are given by

e(a) =€y + ey where a;€{0,...,d -1}, j=1,...,N.
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Defining
\Uoc 3:¢a1®"'®¢a,\, )

{V, : a«€{0,...d —1}"} is an orthonormal basis of Hy consisting of
eigenvectors of Hy. For a multiindex «, and k € {0,...,d — 1} define

km(a) =#{1<j<N aj=m}

where for a set A, #A denotes the cardinality of A. Thus, a second
expression for e(«) is

d-1
e(e) =Y km(a)ex -
m=0
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We consider energy conserving binary collisions: If before a collision the
state of the system is |W,)(W, |, then after the collision it given by a
density matrix p all of whose eigenstates are linear combinations of vectors
the form W where for some i < j, 6p =, for £ ¢ {i,j}, and

ey, + &y, = &5 + &5

Suppose that the spectrum of h is such that the spectrum of H; on
H ®sym H is non-degenerate. Then for any 0 < my,mp, m3,ms < d —1,

€m + €m, = €m; + €m < {ml, m2} = {m3, m4} .

Suppose further that the pair of equations

d—1 d—1
kaen:E and ka = N
m=1 m=1

has exactly one solution for each E in the spectrum of Hy. Then 7 and §
can only differ differ by a pair transposition. (This is generic.)
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The collision rules induce a graph structure on Vy := {0,...d — 1}V: We
say that y,6 € Vy are adjacent if they differ by a pair transposition m; ; for
some i < j. If v is adjacent ¢, we write [, d] to denote the corresponding
edge in Ey. Note that [y, d] = [d,7]. We denote this graph by Gy.

The connected components of Gy are indexed by the k = (ko, ..., kg—1)
such that Zd L km = N, and the corresponding vertex set, Vj k consists
of all a such that ki(a) = kj for each j =0,...,d — 1. Evidently, the

cardinality of Vp is
N!

ko« -+ kp—1!’
and the valency v(«a) of the vertex a:

= Z km(c)kn(cx

m<n

dk =
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For k = (ko, .- -, kg_1) € (Zs0)? with Y94k, = N,
Kmin := min{ko, ..., kq_1}
and _—
r(k) := N

It follows directly from the definition that for all o € Vi,

v(a) > rA(k)N? .

We write Hpy k to denote the corresponding eigenspaces of Hy, and we
write Py i to denote the orthogonal projection onto Hp k in H .
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The Lindblad equations

For each pair of multindices « and 3, define

Fap :=[Va)(Wp|  and LaﬁZFaB—F&kB:Faﬁ_Fﬁa'

L(X) = N Z [Lags [Lag, X]] = Z [Logs [Lap, X1 -

[O[?B] E‘gN [O[?B]E‘C"N

and note that £ = £T.
Since for each «, 8 with [a, 8] € En, Pnklag = LagPnk, it follows that
for all X

PN,k‘C(X)PN,k = E(PN,kX'DN,k) .

Define
Be:={ XeB(Hn) : X=PnxXPnk },

which is a sub-algebra of B(#y). Each B is invariant under £ and the
corresponding Quantum Markov semigroup P; = et~.
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Note that for o # 3, Laﬁ = —Fa — Fzp. Since
[Lag: [Lag, X]| = L2gX + XL25 — 2LapXLag

For X € By,

v(k)
L(X) Z L XLog — 25X
[a,,B]eé'N

Defining &y (X) := %(k) Z[aﬂ]es,\,,k L} sXLag so that ®k(l) =1,

o0 ¢
tL o—2tv(k/(N-1) (t2v(k -1))°
e ‘Bk V(1 )Z Pk
=0
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For any a and any pair permutation ; ; of {1,..., N}, either [a, 7 j(a)] is
an edge or else a = 7; j(a), and each § with [«, 3] € Ep satisfies
B = mj j(a) for exactly one pair i < j. Therefore

Z L sXLag :Z Z L i (@) XL (0) -

[aBle€n k i<j a€Vy

Hence if we define

N 1 %
q)k,(l,_/)(X) = (2)2\/('() Z L@,ﬂ-,-’j(a)XLa,ﬂ',-’j(a) ’

a€Vy k

N _1
P = <2> > i)

i<j
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The spectrum of L

Lemma

For o # (8 and any v, 4,
[Lags [Laps Froll = 20py0p5Faa + 20a~005Fps

= 255755,5/:@5 — 25a7556FBa
— ((55,y + Oy + 05 + 5a5)F,y§ .

The next theorem provides a basis of eigenvectors of L partly in terms of
Ag(ny, the classical graph Laplacian associated to G(N). Recall that

Dgmyf(7) = Y. O] —vnf() .

{6 : [6]€€(N)}
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Theorem

For v # 0, the operators Sy5 := F,s5 + Fsy and L, are eigenvectors of
—(N — 1)L, each with one of three eigenvalues

V) Fv(6) =2, V() +v(E) or v(3)+v(d)+2.

Finally,
(N=1)L(Fy) =2 > [AgylrsFss
0eGn
where Agyy is the graph Laplacian associated with G(N). If 7 is an

eigenvector of Ag(yy with eigenvalue N, then X, := Zéeg(N) usFss then
L(Xy) = NX,.
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Theorem

Let k be such that k,, > 0 for at least two values of m. Then, for all such
k, every eigenvalue \ of —Ag,  satisfies

N<ANN-1). (1)

The lower bound is sharp, in that N is the spectral gap for Ag, , for all
such k. The upper bound is also sharp, in that fork = (1,1,...1), so that
Ag, . generates the random transposition walk on the symmetric group on
N letters, N(N — 1) is the largest eigenvalue of —Ag,

v

Thus whenever r(k) > r > 0, so that v(k) > (g) r2N2,

N> d(djl)rZ = 2(v(k) = 1)/(N —1) > 2N/(N — 1) |

and the spectral gap of £ coincides with that of ﬁAngk.
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Let k be such that r(k) > r > 0. Then for all N > 4/(d(d — 1)r?), the
spectral gap of L on By is 2N/(N — 1).

The invariant subspace By to which p belongs splits into two further
invariant subspaces, one “quantum” and the other “classical”:

Bx = Qk @ Ck

where

Ok =span({Fo3 @ a,fE€VNk, a# [}
and
Ck =span({Fan : @ € Vi } .
When r(k) > r > 0, for large N, the least eigenvalue of —E’Qk is of the
same order — O(N) — as the largest eigenvalue of —E‘Ck, while the spectral

gap is 2N(N —1). The “quantum” degrees of freedom get washed out very
quickly, leaving one with a classical Markov process, as we now explain.
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For each k, define .
= —Pynk - 2
o= g P (2)
The density matrix oy spans the null space of £, and all of non-zero
eigenvalues of L are negative. Therefore, if p is any density matrix on Hy
such that p € By,

t|l>n;o Ptp = Ok - (3)

We are interested in measuring the rate of convergence of P;p to ox. We
have from the spectral gap computation that when r(k) > r > 0 and N is
sufficiently large,

Trl(Pep — 01)?] < e Trl(p — ow)’] - (4)

This may be sharpened.
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Since oy € Ck,

Trl(Pep —0k)?] = Trl(Pe(pa))?] + Trl(Pe(pc) — ox)’]

IN

For k such that v(k) > r > 0, the “quantum” component of p, pgo gets
washed out very quickly and after a short initial layer, one has

Pip = Prpc

to an extremely accurate degree of approximation for large N. .
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The classical Markov semigroup

Ck is a commutative algebra. We identify a function f on Vy  with the
operator Xr given by

X¢ = Z f(o)Fa,a ,

a€Vp k

the map is bijective.
Moreover )
etfXr = Xery where f(t) 1= et VT ANk F | (5)

That is, every question about etﬁ‘ck reduces to a question about the

2 : :
classical Markov semigroup e'W-1290k £, Because of the relatively rapid
decay of etﬁ‘gk, one might hope this is also true to some extent for

em’B . This is the case.
k
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Hypercontractivity for et*

The following norms will be useful: For 1 < p < oo and X € By we
define

. 1/p 1\P
Xlai= (T x720) "7 = (1) 1,

where || X]|, denotes the usual Schatten p-norm of X. For all p > 2, and
all X € B,

1\ /P 1 1/p o1
|Mm*=<¢> nmns(w) X2 = de2 2| X o

Forall p>1,
[ Xellox = [Illp

where the LP norm on the right is computed with respect ot the
normalized probability measure on Vy .
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Therefore, D N—INA
1PeX¢ || pic = ||/ Bomucr ) )

Salez has proved that the semigroup !/ IN=1)Bay, g hypercontractive
with a log-Sobolev constant that is proportional to r(k). In particular,
there is a time Tg bounded by a universal constant times % such that

| exp(Tk2Ag,, ) f[la < [|f]]2 -

It follows that for all X € Cx ||Pr, X]
whole system:

ak < ||X]|2k. This extends to the

Let k be such that r(k) > r > 0. Then there is a time T, bounded by a
universal constant times 1/r such that for all Z € B,

[P Zlax < || Z]

2k -
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First, we take care of the quantum sector:

Lemma

Let k be such that Ky, >

and all X € Qy,

rN where r > 0. Then for all N > 2/r, and all

. (logd + rlog3)
- 4r2 ’

(6)

[PeX{lax < [[Xll2k -
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Write X = X1 4+ X3 4+ X3 where the X are the components of X in the the
three eigenspaces of £ on Q.

For large N,

.2
1PeXflax < e N (I Xellax + | Xellak + [ X3llak) -

Then since || X||ax < dk1/4HXH2,k and di < dV,

1P X2k
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For Z € By, write Z =X+ Y, X €C and Y € Qy Then for t > S,
where
Sk == max{Ty , (logd/4+ log(3/2)/r* },

1PeZllag < [ Xllag+ 1Y llax < V2IIZ]|2x -

Lemma (Glimm's Lemma)

Let P; = et be an ergodic Quantum Markov Semigroup with Py = P;r for
each t. Suppose that for some 0 < T, C < oo

[P X]la < CIX]2

for all X. Suppose also that L has a spectral gap A > 0 so that for all Y
with Tr[Y] =0, ||PsY|l2 < e || Y|2. Then for all X,

log(v/2C)
X\

t> ————= = [|PreeXlla < [|X]2 -
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The proof in the quantum case uses:

Lemma (Carlen and Lieb)

Let d : M,(C) — M,(C) be a completely positive trace preserving map.
Then for all X and all 1 < p < oo,

1O(X)lp < 1OUX DI 1O(X* )l

Let X > 0 and define (X) := Tr[X], and Y := X — (X). Then

(PerrX)t =

(Pesr7Y + (X))*
= (PrP:Y)* + 4(PTP.Y)3(X)
+ 6(PerTY)(X)? + 4(PepT Y)(X)? + (X)*

IX15 = (Y15 + (X)) = VI3 + 2 YIEX)? + (X)* .
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We now follow another classical argument of Glimm and apply apply the
Stein-Riesz-Thorin Interpolation Theorem.

le™ll2e = 1
22 = 1.
Then for 2 < p < 4, with 0(p) defined by

1 1 1
S=(1=0)5+0,,

so that O(p) = (2p — 4)/p, we have for all Z

1PopyZllp < 1122 -
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Differentiating in p at p = 2 yields our LSI:

Theorem
For all k such that r(k) > r > 0, and all Z € By, with Tr[ox|Z|?] = 1,
Trlok|Z|? log |Z|?] < 4GDn(Z, Z)

where the Dirichlet form Dy is defined by
N * _ 1 2
DN(Z,Z) == TroW[Z*LZ] = 1 — ) ﬁz};g Trow[|LasZ)?]
«@, N

and where

G = max{Ty , (logd/4+ (log3/2)/r* } + (log2)/2 .

Note that the constant Cy depends on k only through r(k) and not on N.
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Thank you for your Interest!
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