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Quantum Markov Semigroups

Let H be a finite dimensional Hilbert space. Make B(H) a Hilbert space
by equipping it with the Hilbert-Schmidt inner product

〈A,B〉 = Tr[A∗B].

A linear transformation Φ : B(H)→ B(H) has an adjoint with respect to
this inner product that we denote by Φ†. A linear transformation
Φ : B(H)→ B(H) is unital in case Φ(I ) = I and it is trace preserving
(TP) in case for all A ∈ B(H), Tr[Φ(A)] = Tr[A]. Φ is unital if and only if
Φ† is trace preserving.
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For A, B, C , D in B(H), consider the block operator[
A B
C D

]
= A⊗ E1,1 + B ⊗ E1,2 + C ⊗ E2,1 + D ⊗ E2,2

which we may think of as an operator on H⊕H, or equivalently H⊗ C2.
Then Φ is 2-positive in case[

A B
C D

]
≥ 0⇒

[
Φ(A) Φ(B)
Φ(C ) Φ(D)

]
≥ 0 ;

i.e., in case Φ⊗ IM2(C) is positivity preserving. The definition of
n-positivity is made in the obvious way, and then Φ is completely positive
(CP) in case Φ is n-positive for all n ∈ N.
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We will be particularly concerned with completely positive maps Φ that
satisfy Φ† = Φ that are unital and hence trace preserving. CPTP maps
have a particularly simple Stinespring factorization:
Define Ψm : B(H)→ B(H)⊗Mm(C) by

Ψm(A) =


A

0
. . .

0

 = A⊗ IMm(C) .

Then for some unitary U on H⊗Mm(C), and some m,

Φ(A) = Tr2(U∗Ψm(A)U)

=
m∑
j=1

U∗1,jAU1,j =
m∑
j=1

V ∗j AVj .
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A Quantum Markov Semigroup (QMS) on B(H) is a semigroup {Pt}t≥0

on B(H) such that each Pt is unital and CP.
Let Φ be any CP map on B(H). Then {etΦ}t≥o is a CP semigroup. For
any G ∈ B(H), A 7→ etG

∗
AetG gives another example. Now define

L(A) := Φ(A)− (G ∗A + AG ) .

By the Trotter product formula, {etL}t≥0 is a CP semigroup. It is unital if
and only if L(I ) = 0, and hence

Φ(I ) = G ∗ + G so that G =
1

2
Φ(I ) + iH .

Hence

L(A) = φ(A)− 1

2
(Φ(I )A + AΦ(I )) + i [H,A] .
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Lindblad’s Theorem says that every QMS is if the form {etL}t≥0 where for
some CP map Φ and some self-adjoint H ∈ B(H),

L(A) = Φ(A)− 1

2
(Φ(I )A + AΦ(I )) + i [H,A] .

With Φ(A) =
∑m

j=1 V
∗
j AVj ,

L(X ) =
m∑
j=1

(
V ∗j XVj −

1

2
V ∗j VjX −

1

2
XV ∗j Vj

)
+ i [H,X ]

If L = L† and H = 0,

L = −1

2

n∑
j=1

[Vj , [V
∗
j ,X ]] = −1

2

n∑
j=1

[V ∗j , [Vj ,X ]] .

Then
∂

∂t
ρ(t) = Lρ(t) is a sort of “quantum heat equation”.
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Relative entropy

Given two density matrices ρ, σ ∈ B(H), the relative entropy of ρ with
respect to σ, D(ρ||σ), is defined by

D(ρ||σ) := Tr[ρ(log ρ− log σ)]

Now suppose that {Pt}t≥0 is a QMS and for each t, Pt = P†t so that Pt

takes density matrices to density matrices. Suppose also that Ptσ = σ.
By the Data Processing Inequality (DPI),

D(Ptρ||σ) = D(Ptρ||Ptσ) ≤ D(ρ||σ) .

The relative entropy dissipation under Pt is

I (ρ||σ) := − d

dt
D(P†t ρ||σ)

∣∣∣∣
t=0

≥ 0 .
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Entropy-Entropy Dissipation

A generalized logarithmic Sobolev inequality) (GLSI) is an inequality of the
form

I (ρ||σ) ≥ cD(ρ||σ)

for c > 0. Such an inequality yields

D(Ptρ||Ptσ) ≤ e−ctD(ρ||σ) .

Suppose such an inequality holds with σ = 1
dim(H) I . Let h be self adjoint

with Tr[h] = 0. Then for all ε small enough, ρε := σ + εh is a density
matrix, and so for all such ε,

I (ρε||σ) ≥ cD(ρε||σ) .

Expanding to second order in ε yields the spectral gap inequality (SGI)

−〈h, Lh〉 ≥ c

2
〈h, h〉 for 〈h, I 〉 = 0 .
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As we have seen, a spectral gap inequality is weaker than a generalized
logarithmic Sobolev inequality. There is also a stronger inequality, namely
a logarithmic Sobolev inequality.

Theorem

Let L be a quantum Markov semigroup generator with L = L†, and let σ
satisfy Lσ = 0. Then for any density matrix ρ.

I (ρ||σ) ≥ 4
n∑

j=1

Tr |[Vj ,
√
ρ]|2 .
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A logarithmic Sobolev inequality (LSI) for the QMS generators considered
here is an inequality of the form

n∑
j=1

Tr |[Vj ,
√
ρ]|2 ≥ c

4
D(ρ||σ) .

By the theorem, this implies

I (ρ||σ) ≥ cD(ρ||σ) ,

which in turn implies

−〈h, Lh〉 ≥ c

2
〈h, h〉 .

It is known that

D(ρ||σ) ≥ 1

2
‖ρ− σ‖1 =

1

2
Tr[|ρ− σ|] .
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An easy computation yields (since L = L†)

I (ρ||σ) = −Tr[(Lρ)(log ρ− log σ)] .

Using the integral representation

logX =

∫ ∞
0

(
1

λ+ 1
− 1

λ+ X

)
dλ ,

one deduces

I (ρ||σ) =
1

2

∑
j

∫ ∞
0

Tr

[
[Vj , ρ]∗

1

λ+ ρ
[Vj , ρ]

1

λ+ ρ

]
dλ .
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The functional

(K ,X ) 7→
∫ ∞

0
Tr

[
K ∗

1

λ+ X
K

1

λ+ X

]
dλ

is jointly convex on Mn(C)×M++
n (C) by a Theorem of Lieb from 1973.

Just as the joint convexity of the relative entropy leads to the DPI, this
functional is also monotone decreasing under

(K ,X ) 7→ (Φ(K ),Φ(X ))

for any CPTP map, a result due to Petz in 1996.
This is fundamentally important in a geometric approach to proving GLSI
that has been developed by myself and Jan Maas, and other researchers as
well – it is a very active field. But it is unknown how to check the
geometric conditions in the cases we discuss here. Instead, we shall
directly prove an LSI.
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The N-particle binary collision model

Consider a d-dimensional Hilbert space H and a single particle Hamiltonian
h with d distinct eigenvalues e0, . . . , ed−1. Let {ψ0, . . . , ψd−1} be an
orthonormal basis for H with hψj = ejψj for all 0 ≤ j ≤ d − 1. The
corresponding N-particle Hamiltonian on HN = ⊗NH is given by

HN =
N∑
j=1

I ⊗ · · · ⊗ h ⊗ · · · ⊗ I

where h is in the jth position. The eigenvalues of HN are indexed by the
multindices α ∈ {0, . . . , d − 1}N , and are given by

e(α) = eα1 + · · · eαN
where αj ∈ {0, . . . , d − 1} , j = 1, . . . ,N .
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Defining
Ψα := ψα1 ⊗ · · · ⊗ ψαN

,

{Ψα : α ∈ {0, . . . d − 1}N} is an orthonormal basis of HN consisting of
eigenvectors of HN . For a multiindex α, and k ∈ {0, . . . , d − 1} define

km(α) = #{1 ≤ j ≤ N αj = m }

where for a set A, #A denotes the cardinality of A. Thus, a second
expression for e(α) is

e(α) =
d−1∑
m=0

km(α)ek .
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We consider energy conserving binary collisions: If before a collision the
state of the system is |Ψγ〉〈Ψγ |, then after the collision it given by a
density matrix ρ all of whose eigenstates are linear combinations of vectors
the form Ψδ where for some i < j , δ` = γ` for ` /∈ {i , j}, and

eγi + eγi = eδi + eδi

Suppose that the spectrum of h is such that the spectrum of H2 on
H⊗sym H is non-degenerate. Then for any 0 ≤ m1,m2,m3,m4 ≤ d − 1,

em1 + em2 = em3 + em4 ⇐⇒ {m1,m2} = {m3,m4} .

Suppose further that the pair of equations

d−1∑
m=1

kmen = E and

d−1∑
m=1

km = N

has exactly one solution for each E in the spectrum of HN . Then γ and δ
can only differ differ by a pair transposition. (This is generic.)
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The collision rules induce a graph structure on VN := {0, . . . d − 1}N : We
say that γ, δ ∈ VN are adjacent if they differ by a pair transposition πi ,j for
some i < j . If γ is adjacent δ, we write [γ, δ] to denote the corresponding
edge in EN . Note that [γ, δ] = [δ, γ]. We denote this graph by GN .

The connected components of GN are indexed by the k = (k0, . . . , kd−1)
such that

∑d−1
m=1 km = N, and the corresponding vertex set, VN,k consists

of all α such that kj(α) = kj for each j = 0, . . . , d − 1. Evidently, the
cardinality of VN,k is

dk :=
N!

k0! · · · kr−1!
,

and the valency v(α) of the vertex α:

v(α) =
∑
m<n

km(α)kn(α) .
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Definition

For k = (k0, . . . , kd−1) ∈ (Z≥0)d with
∑d−1

m=0 km = N,

κmin := min{k0, . . . , kd−1}

and
r(k) :=

κmin

N

It follows directly from the definition that for all α ∈ VN,k,

v(α) ≥ r2(k)N2 .

We write HN,k to denote the corresponding eigenspaces of HN , and we
write PN,k to denote the orthogonal projection onto HN,k in HN .
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The Lindblad equations

For each pair of multindices α and β, define

Fαβ := |Ψα〉〈Ψβ| and Lαβ = Fαβ − F ∗αβ = Fαβ − Fβα .

L(X ) =
1

N − 1

∑
[α,β]∈EN

[Lαβ, [Lαβ,X ]] = − 1

N − 1

∑
[α,β]∈EN

[L∗αβ, [Lαβ,X ]] .

and note that L = L†.
Since for each α, β with [α, β] ∈ EN , PN,kLαβ = LαβPN,k, it follows that
for all X

PN,kL(X )PN,k = L(PN,kXPN,k) .

Define
Bk := { X ∈ B(HN) : X = PN,kXPN,k } ,

which is a sub-algebra of B(HN). Each Bk is invariant under L and the
corresponding Quantum Markov semigroup Pt = etL.
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Note that for α 6= β, L2
αβ = −Fα,α − Fβ,β . Since

[Lαβ, [Lαβ,X ]] = L2
αβX + XL2

αβ − 2LαβXLαβ ,

For X ∈ Bk,

L(X ) =
2

N − 1

∑
[α,β]∈EN

L∗αβXLαβ − 2
v(k)

N − 1
X .

Defining Φk(X ) := 1
2v(k)

∑
[αβ]∈EN,k

L∗αβXLαβ so that Φk(I ) = I ,

etL
∣∣
Bk

= e−2tv(k/(N−1))
∞∑
`=0

(t2v(k)/(N − 1))`

`!
Φ`
k
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For any α and any pair permutation πi ,j of {1, . . . ,N}, either [α, πi ,j(α)] is
an edge or else α = πi ,j(α), and each β with [α, β] ∈ EN satisfies
β = πi ,j(α) for exactly one pair i < j . Therefore∑

[αβ]∈EN,k

L∗αβXLαβ =
∑
i<j

∑
α∈VN,k

L∗α,πi,j (α)XLα,πi,j (α) .

Hence if we define

Φk,(i ,j)(X ) :=

(
N

2

)
1

2v(k)

∑
α∈VN,k

L∗α,πi,j (α)XLα,πi,j (α) ,

Φk =

(
N

2

)−1∑
i<j

Φk,(i ,j)
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The spectrum of L

Lemma

For α 6= β and any γ, δ,

[Lαβ, [Lαβ,Fγδ]] = 2δβγδβδFαα + 2δαγδαδFββ

− 2δβγδαδFαβ − 2δαγδβδFβα

− (δβγ + δαγ + δβδ + δαδ)Fγδ .

The next theorem provides a basis of eigenvectors of L partly in terms of
∆G(N), the classical graph Laplacian associated to G(N). Recall that

∆G(N)f (γ) =

 ∑
{δ : [δ,γ]∈E(N)}

f (δ)

− v(γ)f (γ) .

Eric Carlen (Rutgers) Entropy Dissipation June 13, 2022 21 / 36



Theorem

For γ 6= δ, the operators Sγδ := Fγδ + Fδγ and Lγδ are eigenvectors of
−(N − 1)L, each with one of three eigenvalues

v(γ) + v(δ)− 2 , v(γ) + v(δ) or v(γ) + v(δ) + 2 .

Finally,

(N − 1)L(Fγγ) = 2
∑
δ∈GN

[∆GN ]γδFδδ

where ∆G(N) is the graph Laplacian associated with G(N). If ~u is an
eigenvector of ∆G(N) with eigenvalue Λ, then Xu :=

∑
δ∈G(N) uδFδδ then

L(Xu) = ΛXu.
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Theorem

Let k be such that km > 0 for at least two values of m. Then, for all such
k, every eigenvalue λ of −∆GN,k

satisfies

N ≤ λ ≤ N(N − 1) . (1)

The lower bound is sharp, in that N is the spectral gap for ∆GN,k
for all

such k. The upper bound is also sharp, in that for k = (1, 1, . . . 1), so that
∆GN,k

generates the random transposition walk on the symmetric group on
N letters, N(N − 1) is the largest eigenvalue of −∆GN,k

Thus whenever r(k) ≥ r > 0, so that v(k) ≥
(d

2

)
r2N2,

N ≥ 4

d(d − 1)r2
⇒ 2(v(k)− 1)/(N − 1) > 2N/(N − 1) ,

and the spectral gap of L coincides with that of 2
N−1 ∆GN,k

.
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Theorem

Let k be such that r(k) ≥ r > 0. Then for all N > 4/(d(d − 1)r2), the
spectral gap of L on Bk is 2N/(N − 1).

The invariant subspace Bk to which ρ belongs splits into two further
invariant subspaces, one “quantum” and the other “classical”:

Bk = Qk ⊕ Ck
where

Qk = span({Fα,β : α, β ∈ VN,k , α 6= β }

and
Ck = span({Fα,α : α ∈ VN,k } .

When r(k) ≥ r > 0, for large N, the least eigenvalue of −L
∣∣
Qk

is of the

same order – O(N) – as the largest eigenvalue of −L
∣∣
Ck

, while the spectral

gap is 2N(N − 1). The “quantum” degrees of freedom get washed out very
quickly, leaving one with a classical Markov process, as we now explain.
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For each k, define

σk :=
1

dk
PN,k . (2)

The density matrix σk spans the null space of L, and all of non-zero
eigenvalues of L are negative. Therefore, if ρ is any density matrix on HN

such that ρ ∈ Bk,
lim
t→∞

Ptρ = σk . (3)

We are interested in measuring the rate of convergence of Ptρ to σk. We
have from the spectral gap computation that when r(k) ≥ r > 0 and N is
sufficiently large,

Tr[(Ptρ− σk)2] ≤ e−4t Tr[(ρ− σk)2] . (4)

This may be sharpened.
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Since σk ∈ Ck,

Tr[(Ptρ− σk)2] = Tr[(Pt(ρQ))2] + Tr[(Pt(ρC)− σk)2]

≤ e−t2(v(k)−1)/(N−1) Tr[ρ2
Q] + Tr[(Pt(ρC)− σk)2] .

For k such that v(k) ≥ r > 0, the “quantum” component of ρ, ρQ gets
washed out very quickly and after a short initial layer, one has

Ptρ ≈ PtρC

to an extremely accurate degree of approximation for large N. .
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The classical Markov semigroup

Ck is a commutative algebra. We identify a function f on VN,k with the
operator Xf given by

Xf :=
∑

α∈VN,k

f (α)Fα,α ,

the map is bijective.
Moreover

etLXf = Xf (t) where f (t) := e
t 2
N−1

∆GN,k f . (5)

That is, every question about etL
∣∣
Ck

reduces to a question about the

classical Markov semigroup e
t 2
N−1

∆GN,k f . Because of the relatively rapid
decay of etL

∣∣
Qk

, one might hope this is also true to some extent for

etL
∣∣
Bk

. This is the case.
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Hypercontractivity for etL

The following norms will be useful: For 1 ≤ p <∞ and X ∈ BN,k we
define

‖X‖p,k :=
(

Tr[σk(X ∗X )p/2]
)1/p

=

(
1

dk

)1/p

‖X‖p

where ‖X‖p denotes the usual Schatten p-norm of X . For all p > 2, and
all X ∈ Bk,

‖X‖p,k =

(
1

dk

)1/p

‖X‖p ≤
(

1

dk

)1/p

‖X‖2 = dk
1/2−1/p‖X‖2,k .

For all p ≥ 1,
‖Xf ‖p,k = ‖f ‖p

where the Lp norm on the right is computed with respect ot the
normalized probability measure on VN,k.
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Therefore,
‖PtXf ‖p,k = ‖et(2/(N−1))∆GN,k f ‖p .

Salez has proved that the semigroup e
t(2/(N−1))∆GN,k is hypercontractive

with a log-Sobolev constant that is proportional to r(k). In particular,
there is a time Tk bounded by a universal constant times 1

r(k) such that

‖ exp(Tk2∆GN,k
)f ‖4 ≤ ‖f ‖2 .

It follows that for all X ∈ Ck ‖PTk
X‖4,k ≤ ‖X‖2,k. This extends to the

whole system:

Theorem

Let k be such that r(k) ≥ r > 0. Then there is a time T ′k bounded by a
universal constant times 1/r such that for all Z ∈ Bk,

‖PT ′kZ‖4,k ≤ ‖Z‖2,k .
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First, we take care of the quantum sector:

Lemma

Let k be such that κmin ≥ rN where r > 0. Then for all N ≥ 2/r , and all

t ≥ (log d + r log 3)

4r2
, (6)

and all X ∈ Qk,
‖PtX‖4,k ≤ ‖X‖2,k .
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Write X = X1 + X2 + X3 where the Xj are the components of X in the the
three eigenspaces of L on Qk.
For large N,

‖PtX‖4,k ≤ e−tr
2N (‖X1‖4,k + ‖X2‖4,k + ‖X3‖4,k) .

Then since ‖X‖4,k ≤ dk
1/4‖X‖2,k and dk ≤ dN ,

‖PtX‖4,k ≤ e−tr
2Nd

1/4
k (‖X1‖2,k + ‖X2‖2,k + ‖X3‖2,k)

≤ e−tr
2N+N log d/4 (‖X1‖2,k + ‖X2‖2,k + ‖X3‖2,k)

≤
√

3e−tr
2N+N log d/4‖X‖2,k .
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For Z ∈ Bk, write Z = X + Y , X ∈ Ck and Y ∈ Qk Then for t ≥ Sk,
where

Sk := max{Tk , (log d/4 + log(3/2)/r2 } ,

‖PtZ‖4,k ≤ ‖X‖4,k + ‖Y ‖4,k ≤
√

2‖Z‖2,k .

Lemma (Glimm’s Lemma)

Let Pt = etL be an ergodic Quantum Markov Semigroup with Pt = P†t for
each t. Suppose that for some 0 < T ,C <∞

‖PTX‖4 ≤ C‖X‖2

for all X . Suppose also that L has a spectral gap λ > 0 so that for all Y
with Tr[Y ] = 0, ‖PsY ‖2 ≤ e−λs‖Y ‖2. Then for all X ,

t ≥ log(
√

2C )

λ
→ ‖PT+tX‖4 ≤ ‖X‖2 .

Eric Carlen (Rutgers) Entropy Dissipation June 13, 2022 32 / 36



The proof in the quantum case uses:

Lemma (Carlen and Lieb)

Let Φ : Mm(C)→ Mn(C) be a completely positive trace preserving map.
Then for all X and all 1 ≤ p <∞,

‖Φ(X )‖p ≤ ‖Φ(|X |)‖1/2
p ‖Φ(|X ∗|)‖1/2

p

Let X > 0 and define 〈X 〉 := Tr[X ], and Y := X − 〈X 〉. Then

(Pt+TX )4 = (Pt+TY + 〈X 〉)4

= (PTPtY )4 + 4(PTPtY )3〈X 〉
+ 6(Pt+TY )2〈X 〉2 + 4(Pt+TY )〈X 〉3 + 〈X 〉4 .

‖X‖4
2 = (‖Y ‖2

2 + 〈X 〉2)2 = ‖Y ‖4
2 + 2‖Y ‖2

2〈X 〉2 + 〈X 〉4 .
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We now follow another classical argument of Glimm and apply apply the
Stein-Riesz-Thorin Interpolation Theorem.

‖eTL‖2→4 = 1

‖I‖2→2 = 1 .

Then for 2 < p < 4, with θ(p) defined by

1

p
= (1− θ)

1

2
+ θ

1

4
,

so that θ(p) = (2p − 4)/p, we have for all Z

‖Pθ(p)TZ‖p ≤ ‖Z‖2 .
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Differentiating in p at p = 2 yields our LSI:

Theorem

For all k such that r(k) ≥ r > 0, and all Z ∈ Bk, with Tr[σk|Z |2] = 1,

Tr[σk|Z |2 log |Z |2] ≤ 4CkDN(Z ,Z ) ,

where the Dirichlet form DN is defined by

DN(Z ,Z ) := −Tr σk[Z ∗LZ ] =
1

N − 1

∑
[α,β]∈EN

Tr σk[|Lα,βZ |2] ,

and where

Ck = max{Tk , (log d/4 + (log 3/2)/r2 }+ (log 2)/2 .

Note that the constant Ck depends on k only through r(k) and not on N.
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Thank you for your Interest!
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